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Fig. 5. Transmission-line companion model for a capacitor and second-order
backward differentiation corrector formula

except for the trapezoidal formula for which there are no resistors.
These models enable a clear physical insight into convergence and
energy balance properties of these discrete formulas. Transmission-
line models that involve resistances imply formulas with an energy
imbalance. As a result, for some formulas (e.g., the backward Euler
formula or Gear’s second-order formula) capacitors and inductors
behave like lossy elements. This feature yields a “stable” response,
but prone to large errors for low loss or lossless circuits. For some
other formulas (e.g.. the forward Euler formula) capacitors and
inductors behave like active elements (generators), and the circuit
response may easily diverge

The only formula that has a proper energy balance 1s the trapezoidal
rule. The corresponding model for a capacitor is an open-circuited
lossless transmussion-line section, while the model for an inductor
is a short-circuited section and no resistors are involved. The line
lengths are shortest possible for a discretized analysis, as the transit
time equals one half of the time step.

These models clearly explain why the trapezoidal formula is
superior to other formulas in the analysis of low loss and lossless
circuits, We also note that these models are even used in microwave
engineering to replace capacitors and inductors.

According to the analysis presented, we want to emphasize that
the trapezoidal algorithm is the only one acceptable for the general
purpose, computer-aided (numerical) circuit analysis.
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Error Bound for the Approximate Fourier Transformation
Relationship for Nonuniform Transmission Lines

Roland Finkler and Rolf Unbehauen

Abstract—In this paper, an error bound is presented for Bolinder’s well-
known approximate formula [1] relating the input reflection coefficient
and the local reflectivity parameter of a lossless nonuniform transmission
line (NTL) via the Fourier transformation. Despite modern computers
allowing an accurate analysis, Bolinder’s formula is still of interest. First,
it makes possible an approximate synthesis of NTL’s which can be used
in a subsequent optimization. Second, it supports an intuitive grasp for
the electrical properties of NTL’s.

I. EXACT ANALYSIS

We consider a lossless nonuniform transmission line (NTL) with
the (Laplace transforms of) voltage and current at the electrical
position [2] <. V(z. p) and I(:, p), related by the telegrapher's
equations

J .. .
2= V(s p) =~ pW(a) Iz p)
. S - .
;I(mp)— W(;)‘ (zep) (0<:2<T) (h

with 7 denoting the electrical length and the differentiable function
W (%) the characteristic impedance. Let Z(p) = V(0. p)/I(0, p)
be the input impedance of the NTL when terminated in the ohmic
resistance Rp [Fig. ()], i.e.. V(7. p)/I(r. p) = R;. Thus
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1s the input reflection coefficient with the reference resistance R.
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This result can be interpreted as follows. The reflected wave b(jw)
at the input port may be viewed as being composed of infinitesimal
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Fig. 1. (a) NTL terminated in chmic resistance and (b) schematic illustration
of dbn (=1, Z2, *++. Z2n41; Jw) for the example n = 1.

partial waves according

pjw) = Y /

n=0
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where dby (21, 52, - -+ Z2p413 jw) arises from that infinitesimal part
of the incident wave a(jw) which travels first from the input = = 0 to
an electrical position = € {215 21 +dz1] and is totally refiected there,
then travels back to = € [22; 22 + dz2] and is totally reflected again,
and so on, until it is finally reflected at = € [z2ny1: 22041 +d2any1]
and travels back to the input (Fig. 1(b)). An analysis based upon
representing the NTL as a cascade of .V uniform transmission lines
with electrical lengths 7/N and then letting N — oo yields

Abp (=1, z2. oL Zapg) Jw) =
(=1)"P(z1)P(22) -+ P(z2n41)
. e—].uZ(:l——:f_)+:3—m—:2n+:2n+1)

aljw)dzidzg -+ dzonia. N

(In this analysis, the connections between two adjacent uniform
transmission lines are used instead of the above intervals [z,: z, +
dz]) If we finally note I'(jw) = b(jw)|awy=1. (4) follows from
(6) and (7).

II. APPROXIMATE FORMULA WITH ERROR BOUND

Bolinder’s well-known approximate formula {1}

T(jw) =To(jw)
= / P(z)e™ %% (8)
0

obviously results from (4) by omitting the terms of the sum for n > 1
that corresponds to the neglection of multiple reflections. As shown
in the Appendix, we can state

[F(jw) — To(jw)| < tan y — y.
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Fig. 2. Error bound as a function of y = [y |P(2)]ez.

y = /OT |P(z)]d=

as an error bound for Bolinder’s formula. The right-hand side of (9)
is depicted graphically in Fig. 2. In evaluating this error bound, the
relation

with

(10

Ww)

"#-H

% Z ln 1

u=1

following immediately from (5) and (10) may be useful, where
O0=3% <4 << En=r7and W(&), W(%), -, W(En_1)
denote all local extrema of W (z)in 0 < z < 7.

III. EXAMPLE

Consider an NTL with (normalized) electrical length 7 = = and
characteristic impedance

(12)

12 4 22 +sin 222
1242z —sin 2=/ °

W(:):R(

Fig. 3 arising via the extended Levy transformation {4], [5] from
a uniform transmission line with characteristic impedance R and a
series impedance Rp/(3p” + 3). From (11) with W (%) = W(0) =
R, W(2) = 13446 R, W(%) = 0.T86 58 B, W(%3) = W(r) = R
we get y = 0.536157 which with (9) (cf,, also Fig. 2) results in

ID(jw) — To(jw)| < 0.0580606. Following [4] and [5] we get
Tjw)=
aw(l — w?)sin 7w + j[bw(l — w?) cos mw + cw? sin 7w
D
(13)
with

D =(1—w2)2cos7rw—bw(l—wg)sin Tw+J
(1=’

and a = —(2+7/6)/(6+7),b = (7/6)/(6+7),c=(5)/(6+n).
|T(jw)| and |To(jw)| are depicted in Fig. 4; [T{(jw)} — Lo(jw)] is
depicted in Fig. 5. Obviously, the actual error is everywhere smaller
than the calculated error bound.

sin 7w + bw(l — w? ) cos Tw + cw? sin Tw)

1V. CONCLUDING REMARK

It should be possible to generalize the above considerations to the
case where the matching equations (3) are not valid and/or W () has
discontinuities by augmenting P(:) according to (5) with appropriate
Dirac impulse terms and modifying (11). (If only R # W(0), the
input reflection coefficient can directly be calculated from ['(jw)
determined here, because this only corresponds to a change of the
reference resistance.)
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Fig 3. Normalized characteristic impedance 117(z)/R of an NTL.
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Fig. 4. Absolute values |T'(jw )] (full curve) and |T'o{jw)| (dashed curve) of
the input reflection coefficient and 1ts Bolinder's approximation.
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Fig 5. Absolute value |T(jw) — Tg{jw)]
APPENDIX
DERIVATION OF (9)
Comparing (4) with (8) and considering
‘E*Jw2(31—53+:3— : _3‘ln+32n+1)1 =1 yields
!f()w) — rr](‘],«.‘)l S
Z / |P(21)P(22) P(su41)|d= (14)
n=1 Y Mn

where the ranges of integration .M, are defined as the sets of all
tupels (21, 2o, oo Zongr) With 2 7 (v # 1), 0 < 5, < 7 and
21>z < 23 > 00 > zan < zaq. (Note that reducing the range
of integration by a set of measure zero does not change the value of
the integral ) The integrals in (14) can be simplified according

/ |P(z0)P(=2) Pzpp)|d: =
Jm,

P{z2,41)]dz (15)

with P,, denoting the set of all tupels (z1. a2, + -, Z2,41) with
0 < 21 < 29 < +++ < zZ2441 < 7 and m, the number of
permutations transforming a tupel from P, into one from .M,.
Analogously we have

/ PGP
J{0y r)2ntl

(271—}—1)‘ / iP(Zl)P(LQ) P(33n+1)|07:’ (16)
p'!l
where [0; 7]*" %! is the set of all tupels (1. 22. . 2g,11) with
0 < =, < 7. Equations (15) and (16) imply
/ |P(z1)P(22) P(zan1)|dz
Mo,
= dn / |P(:1)P(;2) P(:2n+1);(1§
[0, 7]2n+1
- 2n+1
=, {/ ]P(;)I(];} (17)
0

with a, = m,/(2n + 1)L
intermediate result

Equation (17) in (14) yields the

oo

IT(ju) ~ Toljuw)| < Z any?

n=1

(18)

with y according (10).
Because the above derivation is valid for any P(:), we may now
manipulate the right-hand side of (18) under the assumption

P(z)=6=const >0 (19)

which with (3) and (5) implies Rz = TV (7) = Re*®7. Thus, because
the NTL acts as a short circuit connection for « = 0, we get from
(2 and Fig. l(a)

_ ReZﬂr _ R
- Re267 + R
On the other hand, using (17) and (19) in (4) with w = 0 yields

T'(0) = tanh 47, 20

L) =" (=1)"an(67)*" T, (21)

Comparing (20) and (21) reveals that the (—1)"«, are the nonvan-
1shing Taylor expansion coefficients of the tanh-function and thus

— 2n ™
> any® = tan y (,1/ < ;)
n=0 -

which with (18) implies (9).

(22)
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